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Explicit solution to the exact Riemann problem and application
in nonlinear shallow-water equations
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SUMMARY

The Riemann solver is the fundamental building block in the Godunov-type formulation of many nonlinear
fluid-flow problems involving discontinuities. While existing solvers are obtained either iteratively or
through approximations of the Riemann problem, this paper reports an explicit analytical solution to the
exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear
algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous
variation from an initial approximation to the exact solution through an embedding parameter. A Taylor
series expansion of the exact solution about the embedding parameter provides a series solution in recursive
form with the initial approximation as the zeroth-order term. For the nonlinear shallow-water equations, a
sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly
accurate results. The proposed Riemann solver is implemented in an existing finite-volume model with
a Godunov-type scheme. The model correctly describes the formation of shocks and rarefaction fans for
both one and two-dimensional dam-break problems, thereby verifying the proposed Riemann solver for
general implementation. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The nonlinear shallow-water equations are used extensively to model propagation and runup of
long waves, such as tides, storm surge, and tsunamis, as well as open channel and overland
flows due to rainstorms or dam collapse. Analytical solutions to these equations are limited to a
few special cases and for most practical applications numerical methods are used. The nonlinear
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shallow-water equations are hyperbolic and admit both continuous and discontinuous solutions.
Among the numerical schemes, the finite-volume method has the advantage of being able to
conserve the basic quantities such as mass and momentum. The Godunov-type schemes based
on the solution of a local Riemann problem are robust and accurate in capturing discontinuities
such as shocks and contact surfaces. The Riemann solver, which is the basis of these numerical
schemes, has gained enormous attention in the research community.

Since there is no close-form solution except for a few trivial initial configurations, a solver is
usually sought through approximations of the Riemann problem. In 1981, Roe [1] proposed an
approximate solver for the Euler equation through the solution of a linearized Riemann problem.
The solver requires an entropy fix to capture a sonic or critical rarefaction [2]. The method has
been refined and applied to many physical problems in science and engineering. Glaister [3] is
one of the first to apply a Roe-type Riemann solver to the nonlinear shallow-water equations and
Dodd [4] extended the approach for wave runup, overtopping, and regeneration problems. Hubbard
and Dodd [5] implemented the method in two dimensions using an adaptive mesh refinement
algorithm, while Bradford and Sanders [6] provided a similar model, but used a characteristic
method to track the moving waterline. LeVeque [7] adopted a Roe-type linearization in a quasi-
steady wave-propagation algorithm, which is capable of balancing the source terms and flux
gradients in high-resolution Godunov methods. Rossmanith et al. [8] presented a generalization
of the wave-propagation method for hyperbolic systems on a general curved manifold that is
high-resolution shock capturing.

An alternate approximate Riemann solver is based on the Osher–Solomon scheme for a general
system of hyperbolic conservation laws [9]. The scheme splits the numerical flux into forward
and backward vector-valued functions and satisfies the entropy condition for sonic flows. It has
been applied by Zhao et al. [10] for the nonlinear shallow-water equations in modeling hydraulic
shock waves and unsteady flow in river basins. Harten et al. [11] suggested another approach for
the solution of the Riemann problem through an approximation to the numerical flux by three
constant states separated by two waves with constant speeds. Einfeldt [12] proposed algorithms
for the computation of the wave speeds. The approach was later referred to as the HLL or HLLE
Riemann solver. Toro et al. [13] modified the HLL scheme by approximating the flux with four
constant states. Using an HLL Riemann solver, Hu et al. [14] proposed a one-dimensional shallow-
water model for wave propagation, runup, and overtopping, and Zhou et al. [15] described a
well-balanced model with the surface gradient method.

Even though approximate Riemann solvers can give good results, some researchers opt for the
so-called exact solver through some numerical iterative schemes. Brocchini et al. [16] applied
the finite-volume method to two dimensions using the weighted average flux method with the
moving waterline treated as a cavitation problem. Wei et al. [17] and Pan et al. [18] presented
well-balanced finite-volume models with the exact Riemann solver. It should be emphasized that
the solver is accurate to a predefined tolerance and is called exact only for differentiation from
the approximate solvers. The exact Riemann solver is applied at all the cell interfaces every time
step with a Newton–Raphson iterative scheme. This is one of the reasons why it has not been
implemented as widely as the approximate solvers. As a result, an explicit analytical solver of
the exact Riemann problem that does not require an iterative scheme will be of interest to many
researchers in the field.

The present paper describes an alternate solution to the exact Riemann problem through the
homotopy analysis method [19, 20]. The method has been applied to many nonlinear problems,
such as the Blasius viscous flow [21, 22], boundary layer flows of non-Newtonian fluids [23],
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nonlinear water waves [24], generalized Hirota–Satsuma coupled KdV equation [25], thin film flows
of a fourth-grade fluid [26], and even the valuation of American put options [27], and produced
highly accurate numerical and analytical solutions to the governing partial different equations. In
addition, it has been implemented with other numerical techniques such as the boundary element
method for the solution of nonlinear problems [28, 29]. The following section provides a summary
for the nonlinear shallow-water equations and the associated Riemann problem and describes the
implementation of the homotopy analysis method to provide a series solution to the exact Riemann
problem. This is followed by a description and a convergence analysis of the proposed Riemann
solver for the two-shock and shock-rarefaction cases. The application of the Riemann solver in the
nonlinear shallow-water equations is demonstrated through one and two-dimensional numerical
examples to arrive at the conclusions and the recommendations for future work.

2. MATHEMATICAL FORMULATION

2.1. Riemann problem for shallow-water equations

The depth-integrated shallow-water equations include a continuity equation and two momentum
equations in the horizontal plane. In the Cartesian (x, y) coordinate system, the conservative form
of the nonlinear shallow-water equations is given by

�U
�t

+ �F
�x

+ �G
�y

=0 (1)

where t denotes time, U is the vector of conserved variables, and F and G are the Cartesian
components of the flux tensor. These vectors are expressed in terms of the flow depth h and the
flow velocity (u,v) as

U=
⎡
⎢⎣

h

uh

vh

⎤
⎥⎦ , F=

⎡
⎢⎢⎣

uh

u2h+gh2/2

uvh

⎤
⎥⎥⎦ and G=

⎡
⎢⎢⎣

vh

uvh

v2h+gh2/2

⎤
⎥⎥⎦ (2)

where g is gravitational acceleration. The hyperbolic system of equations, which has three real and
distinct eigenvalues, admit both continuous and discontinuous solutions. A Godunov-type scheme
based on the solution of a local Riemann problem provides an effective approach to capture the
pertinent flow characteristics.

Direct solutions are not available for two or higher-dimensional Riemann problems. A splitting
technique reduces the problem into two one-dimensional problems. For the x-split component, the
Riemann problem can be expressed as

�U
�t

+ �F
�x

=0 (3)
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Figure 1. General solution of the Riemann problem with a wet bed.

with the initial state

U(x,0)=
{
UL if x�0

UR if x>0
(4)

where the subscripts L and R denote the left and right regions, respectively. This Riemann problem
with an initial discontinuity at x=0 is a generalization of the dam-break problem. Figure 1
illustrates the solution, which consists of shock and rarefaction waves propagating from the discon-
tinuity and separated by the shear wave. Between the left and right regions is the star region, in
which the flow depth and velocity are determined from a Riemann solver.

The constancy of Riemann invariants across rarefaction waves and the Rankine–Hugoniot jump
conditions across shock waves give rise to the following nonlinear algebraic equation for the flow
depth h∗ in the star region [30]:

fL(h∗,hL)+ fR(h∗,hR)+�u=0 (5)

where

fL(h∗,hL)=

⎧⎪⎨
⎪⎩
2(
√
gh∗−√ghL), h∗�hL (rarefaction)

(h∗−hL)

√
1

2
g
h∗+hL
h∗hL

, h∗>hL (shock)
(6)

fR(h∗,hR)=

⎧⎪⎪⎨
⎪⎪⎩
2(
√
gh∗−√ghR), h∗�hR (rarefaction)

(h∗−hR)

√
1

2
g
h∗+hR
h∗hR

, h∗>hR (shock)
(7)

�u=uR−uL (8)

The solution of u∗ follows directly as

u∗ = 1
2 (uL+uR)+ 1

2 [ fR(h∗,hR)− fL(h∗,hL)] (9)
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Since there is no general close-form solution to the nonlinear algebraic equation (5), the exact
solution is sought numerically by a Newton–Raphson iteration scheme:

hi+1∗ =hi∗− fL(hi∗,hL)+ fR(hi∗,hR)+�u

f ′
L(hi∗,hL)+ f ′

R(hi∗,hR)
(10)

where the superscripts indicate the result at the i th or (i+1)th iteration and the prime indicates
a derivative with respect to h∗. The iterative scheme starts with an initial guess h0∗ and continues
until the change in h∗ is smaller than a prescribed tolerance.

2.2. Homotopy analysis method

The homotopy analysis method described by Liao [19, 20] is an extension of the fundamental
concept of topology for the solution of nonlinear differential equations. This analytic technique
is based on a continuous variation from an initial approximation to the exact solution through a
series of deformation equations. The method is adapted here to provide explicit solutions for the
nonlinear algebraic equation (5), expressed in the form

N[h∗]=0 (11)

where N is a nonlinear operator depending on the combination of shock and rarefaction waves.
The solution is mapped to the function H(q) such that, as the embedding parameter q increases
from 0 to 1, H(q) varies continuously from the initial approximation h0 to the exact solution h∗
through the zeroth-order deformation equation:

(1−q){F[H(q)]−F[h0]}=qh̄N[H(q)] (12)

where F is an operator chosen to give H(0)=h0 and H(1)=h∗ at the two limits of the variation
and h̄ �=0 is an auxiliary parameter controlling the convergence rate and region of the solution.
Through this auxiliary parameter, Equation (12) allows a large degree of freedom in the selection
of the initial approximation h0 and the operator F for rapid convergence of the solution.

When dealing with nonlinear differential equations, the operator F is usually a linearized
version of the nonlinear operatorN to facilitate reduction of the zeroth-order deformation equation
into a series of linear equations [20–27]. This is, however, not a necessary condition for the
solution of a nonlinear algebraic equation. By choosingF=N, we fully account for the nonlinear
characteristics in the variation and speeds up the convergence toward the exact solution. This gives
rise to the following zeroth-order deformation equation:

(1−q){N[H(q)]−N(h0)}=qh̄N[H(q)] (13)

which represents a departure from the conventional homotopy analysis method. The variation to the
exact solution is implemented through a successive approximation with the initial approximation
as the first term. To this end, H(q) is expanded in a Taylor series about q=0 as

H(q)=h0+
∞∑

m=1
hmq

m (14)

where

hm = 1

m!
dm

dqm
H(q)

∣∣∣∣
q=0

(15)
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If the initial approximation h0 and the auxiliary parameter h̄ are also properly chosen, the series
(14) converges at q=1 to give the exact solution

h∗ =
∞∑

m=0
hm (16)

This expression provides a relationship between the initial approximation h0 and the exact solution
h∗ by means of the higher-order terms hm derived from Equation (15).

The derivative dmH(q)/dqm in Equation (15) may be derived from the mth order deforma-
tion equation, which is obtained by differentiating Equation (13) m times with respective to the
embedding parameter q:

dm

dqm
N[H(q)]= dm−1

dqm−1

{
q(1+ h̄)

d

dq
N[H(q)]+(1+ h̄)N[H(q)]−N(h0)

}
for m�1 (17)

For m=1 and q=0, it follows straightforwardly from Equations (15) and (17) that

h1= h̄
N(h0)

N(1)(h0)
(18)

where the superscript in parentheses indicates the order of derivative with respect to h0. For m�2,
the derivatives of the composite function N[H(q)] are expanded by Faà di Bruno’s formula to
give an explicit expression for

dmH(q)

dqm
=
{
(1+ h̄)m

dm−1

dqm−1
N[H(q)]+q

dm

dqm
N[H(q)]−

m∑
k=2

dkN(H)

dHk

× Bm,k

[
dH(q)

dq
,
d2H(q)

dq2
, . . . ,

dm−k+1H(q)

dqm−k+1

]}(
dN

dH

)−1

for m�2 (19)

in which Bm,k denotes the Bell polynomials given by

Bm,k

[
dH(q)

dq
,
d2H(q)

dq2
, . . . ,

dm−k+1H(q)

dqm−k+1

]

=∑ m!
j1! j2! . . . jm−k+1!

(
dH(q)

1!dq
) j1 (d2H(q)

2!dq2
) j2

· · ·
(

dm−k+1H(q)

(m−k+1)!dqm−k+1

) jm−k+1

(20)

where the summation is over all nonnegative integers j1, j2, . . . , jm−k+1 for which j1+ j2+·· ·+
jm−k+1=k and j1+2 j2+·· ·+(m−k+1) jm−k+1=m [31]. With q=0, Equation (19) gives rise
to the second and higher-order terms of Equation (15) as

hm = (1+ h̄)

(m−1)!N(1)(h0)

m−1∑
k=1

N(k)(h0)Bm−1,k[h1,2h2, . . . , (m−k)!hm−k]

− 1

m!N(1)(h0)

m∑
k=2

N(k)(h0)Bm,k[h1,2h2, . . . , (m−k+1)!hm−k+1] for m�2 (21)
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Equation (21) provides a recursive formula to determine the mth order term from the first (m−1)
terms of the series.

Both Equations (18) and (21) do not contain the embedding parameter q . The solution to the
Riemann problem can be expressed explicitly in terms of the nonlinear operator in Equation (5)
and the initial approximation h0 as

h∗ = h0+ h̄
N(h0)

N(1)(h0)
+

∞∑
m=2

(
(1+ h̄)

(m−1)!N(1)(h0)

m−1∑
k=1

N(k)(h0)Bm−1,k[h1,2h2, . . . , (m−k)!hm−k]

− 1

m!N(1)(h0)

m∑
k=2

N(k)(h0)Bm,k[h1,2h2, . . . , (m−k+1)!hm−k+1]
)

(22)

Since the Taylor series (14) is unique, its convergence will lead to the exact solution in
Equation (22). If we take the first-order approximation with h̄=−1, Equation (22) becomes

h∗ =h0− N(h0)

N(1)(h0)
(23)

which is equivalent to the first iteration of the Newton–Raphson scheme in Equation (10). At higher
orders, the homotopy analysis method provides a continuous refinement of the initial approximation
instead of functioning as an iterative scheme. It also provides a mechanism to optimize the
convergence rate and region of the solution through the auxiliary parameter h̄. Equation (22) also
presents a general series solution for nonlinear algebraic equations of a single unknown variable.
In spite of its appearance, the expression is rather simple in symbolic computation and is ready
for general application.

3. RIEMANN SOLVER FOR SHALLOW-WATER EQUATIONS

There are three possible cases for the solution of the Riemann problem. These correspond to two
rarefaction waves, two-shock waves, and one rarefaction and one shock wave on the opposite sides
of the discontinuity. For the case of two rarefaction waves, the constancy of the Riemann invariants
and the monotonic variation of the eigenvalues indicate that the solution is limited to h∗�hL and
h∗�hR. The initial state must satisfy the following condition derived from Equation (5):

2(
√
ghL+√ghR)>�u�2|√ghL−√ghR| (24)

The close-form solution in the star region is given by

h∗ = 1

g

[
1

2
(
√
ghL+√ghR)− 1

4
�u

]2
(25)

u∗ = 1
2 (uL+uR)+√ghL−√ghR (26)

There is, however, no close-form solution for the cases of two-shock waves and shock-rarefaction
waves. In this section, we derive explicit solutions for these two cases from the general series
solution in Equation (22). Careful selections of the initial approximation and auxiliary parameter
ensure a fast converging series with a finite number of terms to allow implementation of the solver
in existing numerical models.
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3.1. Two shock waves solution

Based on the Rankine–Hugoniot conditions and the entropy condition, the solution for the case
of two-shock waves correspond to h∗>hL and h∗>hR. Equation (5) gives rise to the following
condition for the initial state:

�u<−|hL−hR|
√
1

2
g
hL+hR
hLhR

(27)

The nonlinear algebraic equation (5) becomes

(h∗−hL)

√
1

2
g
h∗+hL
h∗hL

+(h∗−hR)

√
1

2
g
h∗+hR
h∗hR

+�u=0 (28)

which defines the nonlinear operator in the series solution (22). Although this is not a requirement,
a linear solution of the nonlinear problem is typically used as the initial approximation in the
homotopy analysis method [19–27]. We follow this approach and choose the initial approximation

h0= −√
hLhR/g�u+hL

√
hR+hR

√
hL√

hL+√
hR

(29)

which is the solution of the linearized Equation (28) in the form

(h∗−hL)

√
g

hL
+(h∗−hR)

√
g

hR
+�u=0 (30)

While other linearized versions of Equation (28) exist, the use of the solution of Equation (30),
albeit other factors, results in the most rapid convergence of the series solution (22).

Equation (22) may readily provide the solution in terms of the nonlinear operator and initial
approximation defined by Equations (28) and (29), respectively. The series still contains the
auxiliary parameter h̄, which results in a family of solutions with varying convergence rates and
regions. As pointed out by Liao [19, 20], there are always regions of h̄ for convergence of the
solutions. For a given nonlinear equation, the valid regions of h̄ remain nearly the same for different
values of the coefficients and must be determined through numerical experiments. Figure 2 plots
the so-called h̄-curves from two of the numerical experiments. The solution exhibits two distinct
convergence patterns divided at approximately h̄=−1, where the convergence rate is the most
rapid. The first-order solution is a linear function of h̄ and gives a reasonable approximation of the
solution at h̄=−1. Because Equation (21) is recursive, the higher-order solution is in the form of
a polynomial of h̄ to the same order. The numerical experiments indicate that the first three terms
provide a highly accurate solution over −1.1<h̄<−0.9 for possible ranges of initial states in the
Riemann problem. Increasing the number of terms beyond the third order only serves to increase
the convergence region with little influence on the accuracy of the solution.

The auxiliary parameter h̄ is an important feature of the homotopy analysis method. It allows a
careful examination of the convergence rate and region before a solver is proposed for the Riemann
problem. By choosing h̄=−1 and retaining the first three terms, we have the following solution
for the flow depth in the star region under the condition defined by Equation (27):

h∗ =
3∑

i=0
hi (31)
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Figure 2. Convergence of the two shock waves solution with respect to the auxiliary parameter
h̄: (a) �u/

√
ghL/2=−100 and hR/hL=0.0001 and (b) �u/

√
ghL/2=−2 and hR/hL=1.2.

in which

h1= −�u
√
2/g+�(hL−h0)+�(hR−h0)

(hL−h0)/(2�h20)+(hR−h0)/(2�h20)+�+�
(32)

h2= h21
4�2�2h20

�3(5h0+3hR)+�3(5h0+3hL)

[2��h20(�+�)−h0(�+�)+(�hL+�hR)] (33)

h3 = 2h22
h1

− h31
8�2�2h20

× ��3(�−1)[(5�2+2�+1)hL+h0(�
2−1)]+��3(�−1)[(5�2+2�+1)hR+h0(�

2−1)]
��(�−1)hL+��(�−1)hR+��(�+1)h0+��(�+1)h0

(34)

where

�=
√

1

hL
+ 1

h0
, �=

√
1

hR
+ 1

h0
, �=1+ hL

h0
, �=1+ hR

h0
(35)

The flow velocity in the star region follows as

u∗ = 1

2
(uL+uR)+ 1

2

√
g

2

[
(h∗−hR)

√
h∗+hR
h∗hR

−(h∗−hL)

√
h∗+hL
h∗hL

]
(36)

Figure 3 compares the proposed Riemann solver with the exact solver determined by the Newton–
Raphson iterative scheme. The results show rapid convergence of the proposed Riemann solver
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(a) -∆u /(1/2ghL ) 1/2
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5

Figure 3. Convergence of the solution for two shock waves: (a) over velocity difference for hR/hL=0.01
and (b) over flow depth difference for �u/

√
ghL/2=−4.

over wide ranges of depth and velocity discontinuities. The first-order solution provides a very
good approximation, while the second and third-order solutions are almost identical to the exact
Riemann solver.

3.2. One shock wave and one rarefaction wave solution

For demonstration, we consider the case of a shock wave on the left and a rarefaction wave on the
right. The Rankine–Hugoniot jump conditions indicate that no shock waves can be adjacent to a
region of dry bed giving rise to hL>0 and hR�0. The nonlinear algebraic equation (5) becomes

(h∗−hL)

√
h∗+hL
h∗hL

+2
√
2(
√
h∗−√hR)+

√
2

g
�u=0 (37)

where h∗>hL and hR�h∗. From Equation (5), the initial state must satisfy

2(
√
ghR−√ghL)>�u�(hL−hR)

√
1

2
g
hL+hR
hLhR

and hR>hL (38)

It is straightforward to choose the initial approximation

h0=hL+
√

2hLhR
g(hL+hR)

[−�u+2
√
g(
√
hR−√hL)] (39)

This is the solution of the linearized Equation (37) in the form

(h∗−hL)

√
hR+hL
hRhL

+2
√
2(
√
hL−√hR)+

√
2

g
�u=0 (40)
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Figure 4. Convergence of the shock-rarefaction solution with respect to the auxiliary parameter h̄:
(a) �u/

√
ghL/2=1 and hR/hL=2 and (b) �u/

√
ghL/2=1 and hR/hL=20.

that gives the most rapid convergence among other possible alternatives. Equations (37) and (39),
respectively, provide the nonlinear operator and initial approximation to the solution series in
Equation (22). A numerical experiment indicates that the solution converges most rapidly around
h̄=−1. The convergence pattern shown in Figure 4 is similar to the case of two-shock waves as
it is determined by the overall structure of the series solution (22). The results show an increasing
convergence region with increasing number of terms. The third-order solution is sufficient for most
practical application with a valid range of −1.1<h̄<−0.9.

By choosing h̄=−1 and retaining the first three terms, we have the following solution for the
flow depth in the star region under the condition defined by Equation (38):

h∗ =
3∑

i=0
hi (41)

in which

h1=−2�hLh20(h0�−�hL+�u
√
2/g−2

√
2hR+2

√
2h0)

2h20+2
√
2�hLh

3/2
0 +h0hL+h2L

(42)

h2= h0(�−1)2+hL(3�2+2
√
2h0��−2�−1)

4�h0[h0(�+1)+hL(�+2
√
2h0�−1)] h21 (43)

h3= 2h22
h1

− hL(5�3+2
√
2h0��2−3�2−�−1)+h0(�−1)2(�+1)

8�2h20[h0(�+1)+hL(�+2
√
2h0�−1)] h31 (44)

The flow velocity in the star region follows as

u∗ = 1

2
(uL+uR)+ 1

2

[
2(
√
gh∗−√ghR)−(h∗−hL)

√
1

2
g
h∗+hL
h∗hL

]
(45)
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Figure 5. Convergence of the solution for one shock wave and one rarefaction wave: (a) over velocity
difference for hR/hL=2.5 and (b) over flow depth difference for �u/

√
ghL/2=−0.1.

Figure 5 shows comparisons of the solution with that obtained by the Newton–Raphson iterative
scheme over ranges of initial states. The first-order solution represents a major improvement over
the initial approximation. Rapid convergence occurs at second order, and the third-order solution
is sufficient for general application of the solver. The solution for the case of a rarefaction wave
on the left and a shock wave on the right can be obtained from Equation (41) to (45) by reversing
the flow depths on the left and right sides.

4. NUMERICAL EXAMPLES

The Riemann solver is an important component of the Godunov-type schemes for the nonlinear
shallow-water equations. The proposed Riemann solver is simple and explicit and thus can easily be
implemented into existing finite-volume models. As a demonstration, we use the two-dimensional
finite-volume model of Wei et al. [17] to examine the implementation of the proposed Riemann
solver. The model uses uniform rectangular cells with dimensions (�x, �y) in a Cartesian grid
and integrates the governing equations with a time-step size �t . Equation (1) becomes

Uk+1
i, j =Uk

i, j −
�t

�x
(Fk+1/2

i+1/2, j −Fk+1/2
i−1/2, j )−

�t

�y
(Gk+1/2

i, j+1/2−Gk+1/2
i, j−1/2) (46)

where k denotes the current time step and (i, j) denote indices at the cell centroid. The vectors
Uk
i, j and Uk+1

i, j represent the cell averages at the respective time steps. Equation (46) poses a series
of local Riemann problems at the cell interfaces, where the flux vectors Fi±1/2, j and Gi, j±1/2
are evaluated from the Riemann solver. The model uses an explicit second-order splitting scheme
for the time integration and achieves a second-order accuracy in space through a piecewise linear
interpolation of the conserved variables with the van-Leer limiter.
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4.1. One-dimensional dam-break problems

The finite-volume model with the proposed Riemann solver is first verified with one-dimensional
shallow-water problems involving flow discontinuities that mimic the Riemann problem itself.
Toro [30] describes a series of numerical examples to demonstrate the Godunov-type schemes for
shock capturing. Each of these examples was designed to present a particular degree of difficulty
for the testing of numerical methods. Two of the examples involving shock and rarefaction waves
and two-shock waves are considered here to examine the implementation of the proposed Riemann
solver.

The first example corresponds to a generalized dam-break problem in a 50m long channel. The
dam is located at 10m from the left boundary. The initial flow depth and velocity are respectively
1.0m and 2.5m/s in the left region and 0.1m and 0m/s on the right. The cell width �x=0.5m
and time step �t=0.01s are selected to satisfy the Courant criterion. The dam is removed instantly
at t=0. Figure 6 shows the flow depth and velocity along the channel at t=7 s. The results show
a critical left-propagating rarefaction wave and a strong right-propagating shock wave. Between
the rarefaction wave and shock wave is the star region with constant flow depth and velocity.
The model with the proposed Riemann solver accurately captures the propagation of the shock
wave and the development of the rarefaction fan. The computed flow depth and velocity give
very good agreement with the exact solution provided by Toro [30] based on a Newton–Raphson
scheme.

The second numerical example corresponds to the shock waves generated by a discontinuity of
the flow velocity in the channel. At t=0, the water depth along the channel is constant at 1.0m and
the flow discontinuity is located at x=20m. The flow velocity is 1.5m/s on the left and the water
is at rest on the right of the discontinuity. The computation is based on �x=0.5m and �t=0.01s.
The discontinuity generates two-shock waves propagating in the opposite directions. Figure 7
shows the flow depth and velocity associated with the shock waves at t=6s. The model correctly
captures the propagation speed, the strength of the jump, and the width of the shock layer. The
computed flow depth and velocity are free of spurious oscillations associated with shock waves.
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Figure 6. Comparison of the present numerical solution (symbol) and the exact solution (line) at t=7s
for hL=1.0m, hR=0.1m, uL=2.5m/s, and uR=0.0m/s: (a) flow depth and (b) flow velocity.
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Figure 7. Comparison of the present numerical solution (symbol) and the exact solution (line) at t=6s
for hL=1.0m, hR=1.0m, uL=1.5m/s, and uR=0.0m/s: (a) flow depth and (b) flow velocity.

The results from this example show excellent agreement with the exact solution, together with the
test case above, illustrating the accuracy of the proposed Riemann solver for implementation in a
finite-volume model.

4.2. Two-dimensional dam-break problem

The circular dam-break problem of Toro [30] provides a demanding test case for the implementation
of the proposed Riemann solver in two-dimensional finite-volume models. The dam, which is
an infinitesimally thin circular wall with a radius of 2.5m, is located at the center of a square
computational domain of 40m×40m. The water levels inside and outside the dam are 2.5 and
0.5m, respectively. The circular wall is removed instantly at t=0s and the subsequent evolution of
the wave pattern and flow field in time is examined. This numerical example has some very clear
discontinuous features for model testing. Liang et al. [32] investigate this problem for verification
of a model based on the HLLC solver and dynamically adaptive quadtree grids. Similar problems
with different initial states have also been studied by Alcrudo and Garcia-Navarro [33], Billett and
Toro [34], and Mingham and Causon [35].

The computation uses a cell width of 0.1m in both the x and y directions and a time step of �t=
0.005s. The circular water column at the initial state is approximated by square cells, resulting in a
jagged circumference. The water depth of a cell cut across by the circular wall is assigned a value
based on the weighted average of the cell areas inside and outside the wall. Figure 8 shows three-
dimensional perspective views of the initial surface elevation as well as the sequence of shock and
rarefaction waves developed in the domain. Figure 9 provides the cross-sections of the flow depth
and velocity at t=0,0.4, and 0.7 s. The collapse of the dam generates an outward-propagating
circular shock wave and a converging rarefaction wave. Different from one-dimensional dam-break
problems, a depth gradient develops behind the shock wave. The rarefaction wave reaches the
center at about t=0.4s. The implosion of the water column and reflection of the rarefaction wave
generate a very distinct dip of the surface elevation at the center.
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Figure 8. Perspective views of water surface after collapse of the circular dam.
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Figure 9. Profiles of flow depth and velocity along y=20m at t=0,0.4, and 0.7 s after collapse
of the circular dam.
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Figure 10. Profiles of flow depth and velocity along y=20m at t=1.4,3.5, and 4.7 s after
collapse of the circular dam.
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A new flow pattern develops as the dip expands outward and the water surface at the center
falls below the outside water level of 0.5m. Figure 10 provides the cross-sections of the flow
depth and velocity at t=1.4,3.5, and 4.7 s. A secondary shock was developed by t=1.4s. The
surface elevation near the center decreases sharply as this secondary shock propagates inward,
while the outside shock wave continues to propagate outward with decreasing strength. The flow
depth inside is very close to zero at t=3.5s. The water surface jumps sharply when the secondary
shock wave converges at the center and the reflection generates a third shock wave. As this shock
wave propagates outward, a depth gradient develops behind the discontinuity resulting in another
slight dip at the center. The calculation stops at t=4.7s, when the outside shock wave is about to
reach the boundary.

Despite the use of rectangular grids, the cylindrical symmetry of the shock and rarefaction
waves is well maintained throughout the entire process as depicted in Figure 8. The propagation
of the circular shock waves across the rectangular gridwork does not generate noticeable distortion
to the surface. The approximation of the initial circular water column by square cells only results
in minor modulation of the water surface in the circumferential direction. The modulation, which
is most obvious in the surface plot at t=0.4 s, attenuates as the shock propagates outward. The
finite-volume model accurately describes the dips and spikes of the surface elevation, which are
right at the center of the domain and are difficult to resolve numerically. The sequence of shock
and rarefaction waves, as well as their amplitudes, agrees very well with those reported by Toro
[30], confirming the validity of the proposed Riemann solver over a wide parameter space.

5. CONCLUSIONS AND RECOMMENDATIONS

This paper describes the development and verification of an explicit solution to the exact Riemann
problem of the nonlinear shallow-water equations. The homotopy analysis method provides a
general series solution to the nonlinear algebraic equation resulting from the Riemann problem.
Proper construction of the deformation equations and careful selection of the initial approximation
and the auxiliary parameter result in rapid convergence of the solution series. The first three terms
of the series provide a highly accurate Riemann solver for the cases of two-shock waves and
shock-rarefaction waves.

The proposed solver is implemented in a finite-volume model with the Godunov-type scheme for
demonstration and verification. The model produces excellent agreement of the shock and rarefac-
tion waves with the exact solutions in two one-dimensional numerical examples. A two-dimensional
benchmark example of the circular dam-break problem involving complex flow patterns further
highlights the accuracy of the proposed Riemann solver over a large parameter space. The proposed
Riemann solver is explicit and straightforward, and thus provides a useful alternative to approximate
and numerical solvers in existing finite-volume models for long-wave calculations.

The present study also demonstrates the effectiveness of the homotopy analysis method in
deriving explicit solutions for nonlinear algebraic equations. Many Riemann problems are cast in
the form of nonlinear algebraic equations in terms of a single unknown that do not have close-form
solutions. The proposed general series solution may provide explicit solutions to the generalized
Riemann problem as well as the Riemann problem in two-phase and relativistic flows [36–38].
The proposed method also has applications in other numerical methods involving Riemann solvers,
such as the smoothed particle hydrodynamics method and the discontinuous Galerkin finite element
method.
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